///////////////////////////////////////////////////////////////////// // "On the torsion of rational elliptic curves over sextic fields" // // Harris B. Daniels and Enrique González-Jiménez // ///////////////////////////////////////////////////////////////////// // 2/8/2018 - Magma 2.23 // Magma script related to Proposition 8 (k) //f1 is the j-map from X_0(5) to P1 taken from Zywina, On the possible images of the //mod l representations associated to elliptic curves over Q. //f2 is the j-map from X_{20} to P1 taken from Rouse, Zureick-Brown, Elliptic curves //over $\Q$ and $2$-adic images of Galois. F := FunctionField(Rationals()); f1 := (t^2+10*t+5)^3*t^-1; f2 := (-4*t^8 + 32*t^7 + 80*t^6 - 288*t^5 - 504*t^4 + 864*t^3 + 1296*t^2 - 864*t - 1188)/(t^4 + 4*t^3 + 6*t^2 + 4*t + 1); R:=PolynomialRing(Rationals(),2); g:=Numerator(Evaluate(f1,x)-Evaluate(f2,y)); assert IsIrreducible(g); C:=ProjectiveClosure(Curve(AffineSpace(R),g)); assert Genus(C) eq 3; _,H,map := IsHyperelliptic(C); G1, m1 := AutomorphismGroup(H); phi := m1(G1.2); G := AutomorphismGroup(H,[phi]); QC, pi := CurveQuotient(G); pts := Points(QC : Bound :=100); E, m2 := EllipticCurve(QC,pts[1]); assert Rank(E) eq 0; PTS :=Points(E: Bound:=100); assert #PTS eq #TorsionSubgroup(E); PHI := map *pi*m2; for p in PTS do assert RationalPoints(p @@ PHI) eq {@ C![0,-1,1], C![0,1,0], C![1,0,0] @}; end for; /* Thus there are 2 singular points on C ( [0,-1,1] and [0,1,0] )and one cusp at infinity ( [1,0,0] ) */